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Abstract

In recent years, the development of deep learning methods and in-
creasing computational power has transformed the horizon of machine
learning. Convolutional neural networks also revolutionized computer
vision, significantly improving performance and offering novel solutions
for various problems. However, the high performance of deep models
is not achievable unless copious amounts of labeled data are available,
which is a big obstacle in applying such models in real-world scenarios
where gathering labeled data requires great labor effort. Transfer learning
and its branches like domain adaptation try to overcome this challenge
by utilizing the prior knowledge that a model has learned from another
task. Specifically, in domain adaptation, a source model trained for a
source distribution D; is adapted to a new target distribution D;. While
domain adaptation is a well-studied field, most of the works in this domain
rely on access to redundant data in the target distribution. The few-shot
domain adaptation and cross-domain few-shot learning settings, where
target data is limited, are relatively new problems in the field and have
gained increasing attention in recent literature. This work defines these
two settings concisely and then reviews the latest approaches and methods
in both settings.

1 Introduction

Deep learning methods have caused significant progress in various problems,
including computer vision tasks. However, gathering enough data to train these
models is not a trivial task in many circumstances. Transfer learning is a set
of methods for utilizing extracted knowledge from solving a source problem to
work out a new related target problem. Domain shift is a related problem that
appears in transfer learning when joint distributions P(X,Ys) and P(X;,);)
over the source and target data are not aligned.

While domain shift and transfer learning are well-studied problems, the works in
these fields usually need access to plentiful amounts of target data, a constraining
requirement in many real-world scenarios where gathering data is expensive or
limited due to certain access policies. Thus, Few-shot approaches for overcoming
domain shift are critical in real-world problems and have gained great attention
in recent literature.

In this work, we focus on these techniques, namely few-shot domain adaptation
and cross-domain few-shot learning settings. In the following sections, we first
give a brief definition of transfer learning, domain shift, and related methods,
and then we move on to reviewing literature in mentioned settings in depth.

2 Overview

To define the required concepts, we first fix some notations in the next section
and then go through the definitions of domain shift, domain adaptations, and
few-shot learning.
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Figure 1: SVHN (top), USPS (middle), and MNIST (bottom) datasets.

2.1 Notations

Throughout this text, we represent source and target tasks with 7° and 77,
along with their datasets D° and D?. The source dataset D* is composed of pairs
(2®,y*) while the target dataset might include labels or not, depending on the
setting. Finally, the input space of the source and target tasks are represented
by X*¢ and X, while the label spaces are shown with }* and V¢ respectively.

In computer vision, models usually consist of feature extractor and task head
components. Here, we let F' represent a feature extractor, and G represent the
task head (e.g., a classifier). The resulting feature vectors from F' are shown
with f* and f* for the source and target domain. Given F and G, the hypothesis
h is the final prediction function derived from G o F.

2.2 Domain Shift

In a classification problem, we tend to find a hypothesis h that generalizes well
on an input space X. However, minimizing the error on a distribution P(X*, )%)
may not generalize well when the distribution changes to P(X t, Y?). This change
or shift of distribution that results in poor performance on the new domain is
known as domain shift.

Depending on the change in marginal distributions P(X) and P()), [21]
divides domain shift into the following four variations.

e Covariate shift happens when marginal distributions of the source and
target input spaces differ while the label space remains the same. Prac-
tically, covariate shift happens mostly when we adopt a dataset with the
same task as our target domain, but it has been gathered with different
tools, from another location, or from another perspective, resulting in
visually different images.



MNIST [23], USPS [14], and SVHN [33] digit datasets are well-known
examples of covariate shift. (See Figure[I]) While a model trained on
MINST reaches high performance on handwritten numbers, applying the
same model to USPS results in an accuracy as low as 65% [30]. Figure
shows how covariate shift affects the extracted features for each domain.
While the classes in the source domain are isolated from each other, the
target samples are more scattered and not well-separated. This setting is
studied through domain adaptation.

e Prior shift is the case where the source and target tasks have different
label spaces. Although having different tasks is not surprising in computer
vision, this setting is more interesting when there are not enough target
data to train a new model, and thus, datasets with other tasks are used to
train a model.

Solving prior shift with limited target data is studied in few-shot learning,
where for K new classes, each with N labeled samples, the problem is
called K-way N-shot learning.

e General domain shift is a combination of the two previous settings; The
target task has a new label space, and the input space does not match the
source inputs either. This setting can be formulated similar to few-shot
learning, usually known as the cross-domain few-shot learning problem.

e Concept shift is the final case in which neither the input space nor the
label space does not change. However, the conditional probability P(Y|X
changes as a result of a change in the meaning of the labels. In this work,
we do not cover this setting.

2.3 Domain Adaptation

Domain adaptation (DA) is a transfer learning approach for overcoming covariate
shift. Conventional DA methods utilize datasets from the source and target
domains in order to train a target model with high generalization performance on
the target domain, although other settings are possible as well, e.g. model-based
DA does not require access to the source dataset while adapting a trained source
model.

Most of the work in domain adaptation falls under unsupervised methods
(UDA) which rely on a large number of unlabeled target images along with
the labeled source dataset [5], 4, 4I]. Few approaches use supervised (SDA)
[30, [40, 20] or semi-supervised [35, I7] methods to utilize target labels and
extract their semantic information. While unsupervised and semi-supervised
methods are proved useful, they assume the availability of a large amount of
target domain data. This assumption neglects applications where gathering data
from different domains is not straightforward, like medical applications [24] and
autonomous driving [39] 44].

Supervised domain adaptation (SDA) methods exploit labels from target
domain images to extract semantic information, leading to a better performance
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Figure 2: Illustration of misaligned source and target feature space caused by
covariate shift (a), and their aligned feature space after domain adaptation (b).
Blue points show feature vectors of source samples while red ones represent the
target data. Squares and triangles represent classes. The red and blue ellipses
show the confidence area for each class and domain.

than UDA methods with the same number of target samples. Thus, recent works
[30L [43], [44], [39], 24, 2] have adopted supervised methods to perform domain
adaptation in few-shot settings, i.e. only a few images are available from the
target domain. Few works also try solving the harder few-shot unsupervised DA
[36, 28, [].

Applications in medicine [24], scene parsing and self-driving cars, and social
media monitoring where various different domains, data access restrictions,
and expensive labelling procedures limit the data availability for plain domain
adaptation, are the among the motivations in studying few-shot approaches.

2.4 Few-shot Learning

Few-shot learning is a machine learning paradigm that aims on learning a new
task with limited data or ezperience in machine learning terms. Achieving human-
like intelligence, difficulties with data collection and labelling, and handling rare
classes are major motivations behind studying FSL in problems like object
detection, classification, short-text sentiment analysis, etc.

As mentioned in the previous section, in the context of object classification,
FSL is usually formulated as a K-way N-shot learning problem, where there are
N labeled samples for each of the K new classes. The K x N training samples
are called support set, and they are typically accompanied with ) unlabeled
samples called the query set.

Episode learning, used instead of usual batch learning, is the go-to training
method applied in FSL. To simulate the few-shot conditions in deployment,
episode learning generates episodes of fake support and query sets from the
dataset, with support samples used for learning the task, and query samples for
training the model and backpropagation.
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Figure 3: Overview of methods used for solving covariate shift problem with
limited target data access.

Figure [3] shows an overview of the problems we review in this work and the
methods to solve them.

3 Few-Shot Domain Adaptation

3.1 Supervised

Few-shot supervised domain adaptation (FS-SDA) methods utilize semantic
information provided by the labels from the target space to align the two
domains. While unsupervised adaptation is a more attractive problem when
redundant amounts of data are available, label information becomes crucial with
limited data. Metric [3I], 43] and adversarial [30, 42] methods are the main
approaches to SF-FDA, and we review them in this section.

3.1.1 Metric-based Methods

A large portion of domain adaptation literature focuses on domain alignment
between source and target domains, forcing source and target images to have
feature vectors close to each other in the feature space. Achieving domain
alignment makes it possible to use the same task head or classifier for the source
and target images, as their feature vectors represent similar patterns. Thus,
UDA methods focus on domain alignment as there are no labels from the target
domain to fine-tune the task head. In order to align the domains, metric methods
rely on minimizing the distance between the domains in the feature space by
adding a domain alignment loss L4, term, such as



Lia = d(p(f(X")),p(f(X))), (1)

where d(-) is a distance function, and p(f(-)) is the probability distribution of
feature vectors for each domain. Together with a task loss such as cross entropy
for the source images, feature extractor f is trained to minimize Lg4,.

Although effective in UDA, this method fails to align domains properly
when only a few target images are available. To address this issue [31] and [43]
elaborate on metric-based methods to utilize labels from the target domain. [31]
replaces the domain alignment loss with a semantic alignment loss L4, which
utilizes labels for a better alignment by penalizing source and target images with
the same label that are far from each other. £, can be formulated as

C

Loa =Y dp(f(X5))p(f(X))), (2)

a=1

where Xf and X! are source and target images from class a, and C is the
number of classes. Along with L, [3I] applies a separation loss Ls that
penalizes similarity between source and target images with different classes, and
is formulated as

Lo= Y k(X)) p(f(XD))), (3)

a,bla#b

where k is a similarity metric. Finally, the feature extractor f is trained by
minimizing Ls and Ls4 together with the classification loss.

With a similar approach, [43] uses class probabilities to achieve domain align-
ment in the feature space. The probability p; of making the correct prediction
for the target image x! with label y! = a is defined as

 Sens ep(—d(fo(@), fila)
P S e exp(—d(fo(@), fi(a))

where fs(+) and f;(-) are feature extractor functions for the source and target
domains respectively, and d(-) is a distance measure in the feature space. Since
maximizing the probability p; is desired, log-likelihood of i can be equivalently

(4)

minimized for each target image x§ with label a, which can be formulated as

<ZM; exp(d(fsm,ft(xi))))
L= log )

S en: XD (—d(fa(@), Filws))) (5)

where X; is the set of source images that are not from class a. Minimizing
L would result in minimizing the ratio of intra-class distances to inter-class
distances in the latent space. However, the exponential terms in [b| might end in
scaling issues with optimization algorithms used for training the model. Thus,
Xu et al. [43] relax this formulation to a Hausdorffian distance which minimizes
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Figure 4: Illustration of a generic unsupervised adversarial DA model. The
feature extractor is trained to fool the discriminator while keeping a high classi-
fication performance for source images.

only the largest same-class distance and the smallest distance with other classes.
The resulting loss is formulated as

L = sup {ala € d(x,z;)} — inf {b]b € d(z,z;)} (6)
x€D; zeDy,

for each target sample z; from the k-th class.

3.1.2 Domain Adversarial Methods

Introduction of generative adversarial networks (GANs) in [7] paved the path for
a new line of research in domain adaptation. GANs consist of two generator and
discriminator networks. The generator’s goal is to create fake images that look
real while the discriminator tries to identify the fake images from the real ones.
By playing an adversarial game, the generator learns to fool the discriminator,
and the discriminator, on the other hand, gets better at identifying the fake
images.

Adversarial domain adaptation (ADA) methods [37, 41}, 5] adopt discrimi-
nators and use them for identifying the domain of the outputs of the feature
extractor. Thus, the feature extractor is trained to output domain-invariant
features for the source and target domains so that the discriminator can no
longer distinguish the domains. As in metric-based methods, domain invariant
features result in aligned feature space for both domains, and the task head can
be used for both.

Unsupervised adversarial domain adaptation models (see Figure [4]) generally
apply an adversarial loss L4, along with the usual task loss such as cross-entropy.
The domain discriminator D can be regarded as a domain classifier that predicts
whether the outputs of fs; and f; are from the source domain. L,,q is then
formulated as



Lado (X*, X") = E [log(D(f,(X*)))] — E [log(1 — D(fo(X")))] - (7)

The training objective for D is minimizing the above loss, while f; and f; are
trained to confuse D by maximizing L,4,. Note that f; and fs; might or might
not share weights directly.

Despite getting tremendous attention in UDA, when only a few images are
available from the target domain, training a domain discriminator is not feasible,
as the source data inundate the target domain. To address this problem and
effectively train a domain discriminator, [30} [42] 44] use groups of pairs of images
to augment the data and train the discriminator to identify groups rather than
domains.

Specifically, [30] defines 4 groups G; as follows.

1. G; contains image pairs from the source distribution with the same label,
G- contains image pairs from different distribution but with the same label,

G3 contains image pairs from the source distribution with different labels,

-~ LN

and G4 contains image pairs from different distributions with different
labels.

A multi-class discriminator then tries to recognize the group each pair is coming
from. To confuse the discriminator, the feature extractor learns to minimize the
loss

Lrapa = E[yg, 10g(D(f(G2))) — yg, log(D(f(94)))] , (8)

so that the first and second groups are not distinguishable, as well as the third
and fourth groups. By doing so, pairs from different distributions and the same
label are aligned in the feature space, while those with different labels are still
semantically separable.

[42] and [44] take this idea to object detection and semantic segmentation
problems. [42] introduces instance-level and image-level adaptation modules
on top of the Faster R-CNN [34] model to catch semantic and domain-specific
characteristics.

The image-level adaptation module uses split pooling to uniformly extract
local feature patches across various locations with different aspect ratios and
scales from the feature maps. Each feature window is then pooled to fixed-sized
features using Rol pooling. For each window scale, two groups of pairs of images
Gi+ and G4 are created, where the pairs in the first group consist of two source
image feature patches, and pairs in the second group are made by two feature
patches from different domains. A discriminator is trained for each scale size
that can tell whether a pair comes from G; or Gy, and the feature extractor tries
to confuse the discriminator by maximizing an adversarial loss. This module
helps extract target domain characteristics present across all images, such as fog.

To further align the domains semantically, [34] applies instance-wise adap-
tations as well. For each Rol output with a high IoU, the features are passed
through intermediate layers between the Rol and classifier layers to get features



0;q from domain d with label i. For each class i, two groups N;s and Nj; of
features pairs are created, where the pairs in the first group are both from the
source domain and class 4, and those in the second group are from different
domains and labeled with i. The multi-way instance-level discriminator D¢ is
then applied with the following adversarial loss

C
Eins = Z -E [1Og Dins (Ms)] —E [log Dins (-/\/zt)] (9)

i=1

where C' is the number of classes.

[44] uses a similar approach for adapting a model trained on synthetic to
real-world in the context of semantic segmentation by applying two discriminator
networks on feature patches from two different layers. At each iteration, three
pairs gss, g, and g are created, where the first pair is made from concatenating
features of a source image from current iteration with one from the previous
iteration, the second pair is created similar to the first pair but from target
images, and the third pair consists of features from two source and target images
in the current iteration. The discriminators are then trained to recognize each
pair, while the main model learns to confuse the discriminator along with the
segmentation task using both source and target data.

In a similar setting to that of [44], [39] also uses adversarial methods to
adapt a synthetically trained model. However, [39] does not use image pairs,
and instead, proposes a pixel-wise adaptation method inspired by [II] to prevent
negative transfer for poorly represented classes. For source and target images x*°
and z!, the discriminator D is trained to minimize the loss

Lp=— log Di(f(z*)) +log(1 — Dy(f (")), (10)

i€L

where 7 is the set of pixels for each image.

3.2 Unsupervised

While the literature on UDA is rich and well-explored, most conventional UDA
methods fail in unsupervised few-shot settings. This section reviews the few
works within the unsupervised few-shot setting, primarily based on augmenting
data by generating new images.

3.2.1 Image Generative Methods

With the introduction of Conditional GANs [29], new research directions evolved
in image-to-image translation and style transfer [15 [26], 46 27, 36]. Image-to-
image (I2I) translation generally focuses on transferring an image to a new style
or distribution, while keeping its content, e.g. making a photo look like paintings
from Van Gogh. While supervised 12I methods require image pairs from both
styles with the same content for training, unpaired 121 relies on datasets from
each distribution, without explicitly pairing images in them.
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Figure 5: An illustration of COCO-FUNIT [36] model. The style encoder
generates the source-conditioned style code zs, which is applied to the content
decoder network as the AdaIN parameter.

Cycle consistent image translation [46] made a big step in unpaired image
translation. [46] proposes finding two mappings F : X* — Xt and G : Xt — X%,
where F' and G should satisfy the cycle consistency, i.e. for any two images
x~X%and y ~ Xt G(F(z)) = 2 and F(G(y)) ~ y. To achieve this goal, the
cycle consistency loss is defined as

Leye = Banxs [||G(F(2)) = 2[h] + Eynee [[[F(G(y)) = yll] (11)

where || - ||1 is the 1-norm. While cycle consistency was originally proposed for
image translation, [32] adopts a set of losses inspired by cycle consistency to
achieve a domain invariant feature space that contains critical information to
reconstruct images from their latent representation. Similarly, [I0] uses image
translation with cycle consistency from [46] to transfer source images to the
target domain, and adapt a model pretrained on the source domain using the
translated source images.

While the mentioned methods are effective in I2I and UDA, they fail in
few-shot settings. An alternative would be entirely translating source images
to the target domain and training the whole model with the translated source
images. A proper image-to-image translation model should utilize a few images
from the target distribution to extract their style and transfer the source images
to the target domain. Such a model must preserve the source images’ content so
that labels remain valid. In tasks like semantic segmentation, where labels are
specified pixel by pixel, minor variations in pose or location of content can lead
to catastrophically wrong labels.

[43] proposes a few-shot 12 model capable of extracting the content of the
source image and the style of a previously unseen target domain with few samples,
using two content encoder and style encoder networks. The resulting content
code from them content encoder is fed to a decoder network along with the style
code as the AdaIN[I2] parameter to make up the final image. AdaIN proposes

10



rescaling outputs of each upsampling layer in the encoder network regarding the
mean and variance of the style code, assuming that these two parameters control
the image’s visual characteristics.

[36] proposed a new model built on top of the [43] to further control the
content loss. While keeping the content encoder and decoder networks the same,
[36] modified the style encoder by conditioning it on the source image content,
so that the style code extracted from the target image is controlled by the source
image as well.

In the new content-conditioned style encoder, source and target images are
separately fed into two source and target style encoder networks and are then
concatenated to build the final style code. The style code is treated similar to
[27] as AdaIN parameters. To train the network, source images are divided into
k domains or classes which contain similar objects. In each iteration, a pair of
images (., x)) are sampled from two classes, and the network learns to translate
T. to Tk.

3.2.2 Unified Generation and Adaptation

While style transfer and 121 models provide a way to generate images in the target
domain and train a model, they are deployed discretely, making it impossible to
get feedback from the adaptation process and the task head for the translation
network. [28] and [§] address this drawback in a one-shot scenario by using a
variational autoencoder [18, [19] (VAE) combined with AdaIN [I3].

The proposed random AdaIN (RAIN) module [28] includes a VAE that
takes as input p(f:) and o(fi), where p(-) and o(-) are channel-wise mean and
standard deviation, and f; is the feature maps of the target image. As a result,
the VAE learns a Gaussian distribution A" with mean 1) and standard deviation
£. The VAE then samples a new mean and standard deviation vector e from
N, reconstructs it to get a new style vector, and generates a new image with
the content code of a source image and the generated style code as the AdalN
parameter. The generated image keeps the content of the source image with
a style similar to the target. As new images are fed to the main network for
training, the gradients of the loss function are computed with respect to € to
create a style that is harder for the network to process. As a result, styles close
to the single target image are discovered adversarially, and the network learns
to generalize to the target domain.

3.3 Analytical Comparison

MNIST [23] and USPS [14] are famous digit datasets usually used to evaluate
the performance of DA algorithms. Both datasets contain handwritten grayscale
digits from 10 classes (0 to 9). Table [I| shows the results achieved by supervised
few-shot DA methods compared with unsupervised DA algorithms.

Note that results from UDA methods in Table [I] are achieved using the full
MNIST and USPS datasets, while FS-DA methods use n;-shot support sets
for adaptation. The results suggest that the semantic info from a few labeled
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Table 1: Accuracy of DA methods in MNIST to USPS (M — U) and USPS to
MNIST (U — M) domain adaptation for image classification task. n; shows
the number of target images available per class, where in ng setting, no domain
adaptation is conducted.

UDA methods Few-shot DA
Method [6] [41] 137 CCSA | FADA | d-SNE
[31] [30] [43]
ng=20 58.6% | 58.6% | 83.37%
ng=1 78.4% | 81.1% -
U—-M n, =3\ 73.7% | 90.1% | 90.8% | 85.8% | 87.5% -
ng=>5 88.8% | 91.1% -
ng="17 89.4% | 91.5% | 97.52%
ng =0 65.4% | 65.4% | 73.0%
ng=1 85.0% 89.1% 92.9%
M—=>U n,=3| 91.8% | 89.4% | 92.5% | 90.1% | 91.9% | 93.5%
ng=>5 92.4% | 93.4% | 95.1%
ng =17 92.9% 94.4% 96.1%

samples boost the model’s performance, outperforming UDA approaches with
more data.

While CCSA [31I] and d-SNE [43] are both based on a contrastive idea
that pulls samples with the same class close together and pushes different
classes apart, they implement different metrics. [31] estimates the distance
between distributions and their similarity with average pairwise distances, but
[43] maximizes the shortest inter-class distance and minimizes the highest intra-
class distance, explicitly penalizing scattered samples from the same class and
close clusters of different classes. As evident in[I} the second implementation
works better in the FS-DA setting.

The adversarial approach proposed by FADA [30] aligns the positive (negative)
source-target pairs with the positive (negative) source-source pairs. While
the augmentation technique and the adversarial manner outperform CCSA, it
does not use semantic info to separate clusters of different classes. Also, the
limited target data might still not be enough for the adversarial training of the
discriminator.

4 Cross-Domain Few-Shot Learning
Guo et al. [J] discussed the performance of the existing FSL methods in a

novel cross-domain benchmark using a variety of datasets with varying levels of
dissimilarity with the source images in perspective distortion, semantic content,

12



and color depth. Their study resulted in a new chapter of FSL research concerning
covariate shift. In this section, we will review the CD-FSL methods in recent
literature and their contribution to the field.

4.1 Adversarial

While using adversarial methods in conventional domain adaptation is well
explored, they are less studied in the few-shot learning context as the sample
scarcity and disjoint label spaces make it harder to apply adversarial learning
effectively. [3] and [45] apply domain adversarial learning in few-shot learning
settings.

[3] utilizes domain adversarial learning along with a data sampling method
on top of the prototypical network [38] for the one-shot cross-domain learning
problem. The binary domain discriminator is applied right after the feature
extractor fy, where it aligns features of source and target domains. The discrim-
inator and feature extractor are trained with adversarial loss, while the feature
extractor is also optimized on a classification loss for the source data.

Similar to [3], [45] also uses domain adversarial loss to align two domains.
However, as per-class alignment is not desired in the few-shot learning settings,
where the source and target domains have disjoint label spaces, [45] applies
other loss terms to control class isolation. The proposed model includes an
embedding module right after the feature extractor, consisting of an autoencoder
and an attention layer catching domain invariant features. The outputs of the
embedding module are then fed to a domain discriminator with an adversarial
objective function.

4.2 Fine-tuning

Fine-tuning is a well-known approach in conventional transfer learning approaches
when parameters of a pre-trained model are tuned using the new data to fit it.
However, applying fine-tuning when data is scarce might result in unwanted
results such as over-fitting. [16] and [25] develop models that can be fine-tuned
with limited target data.

The Transductive Multi-head model proposed in [16], developed based on
[22], applies three task heads while training and uses them to fine-tune the
model on the target domain. Specifically, the main task head is a prototypical
network called the Meta-confidence Transductive head. The second task head is
a pixel-wise prototypical classification network that classifies each pixel in the
feature space using learned prototypes for each class. Finally, the third head is
a fully connected classifier. In the training phase, all three heads are used to
compute the loss and train the feature extractor along with each head. While
fine-tuning on the target domain, only the third head is active, which fine-tunes
the feature extractor. Eventually, the auxiliary heads are dropped, and the first

13
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Figure 6: Overview of the CVPR 2020 cross-domain FSL challenge.

prototypical head is used for testing.

[25] proposes an ensemble consisting of M identical models except that a
random transformation is applied to the feature space in each model. For each
model i € {1,..., M}, the feature extractor produces feature vectors fZ, and
an orthogonal matrix F; is generated and applied to the feature vectors to
get transformed features f¥ = E;F?. Transformed features are then fed to a
softmax classifier ¢;, and the models are trained using the cross-entropy loss.
After pre-training with the source data, support sets sampled from the augmented
few-shot target dataset are used to train target classifiers ¢! and fine-tune the
feature extractors. In order to supply the model with more labeled data, [25]
also uses a semi-supervised label propagation process to use the unlabeled test
data for further tuning.

Finally, [2] uses a 2-step fine-tuning process by implementing a first-order
model-agnostic meta learning algorithms such as episodic learning. During the
first step, first k& layers of the feature extractor are frozen, and the support
samples are used along with a linear classifier to fine-tune the last layers of the
feature extractor with the cross entropy loss. During the second step, the linear
classifier is replaced with a metric-learning module (such as prototypical network
or a GNN FSL model), and all the layers are updated using the training loss.
This simple method first catches high level representations in the target domain,
and then fine-tunes the model in the FSL way.

4.3 Analytical Comparison

The CD-FSL benchmark [9] and the CVPR 2020 challenge provide a proper
benchmark for evaluating the reviewed methods. The test is conducted on four
datasets with varying number of samples for each class, and all models are
pretrained with the ImageNet dataset.

Table 2] shows the CD-FSL benchmark accuracy scores for each model and
support size. As evident in this table, the ProtoNet model trained on ImageNet
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Table 2: Accuracy of the FSL methods evaluated with the CD-FSL benchmark

9.
Method ProtoNet TMHFS BSR [25] Meta
[38, @] [16] Fine-tuning
2l

ng =95 79.7% 95.2% 96.6% 96.2%

CropDisease n; = 20 88.1% 98.5% 99.1% 98.9%
ng = 50 90.8% 99.2% 99.7% 99.4%

ng =95 73.2% 85.3% 88.1% 89.8%

EuroSAT ny = 20 82.2% 92.4% 94.7% 93.9%
ng = 50 80.4% 95.6% 96.8% 96.0%

ng =95 39.5% 53.8% 57.4% 61.7%

ISIC ny = 20 49.5% 65.4% 68.0% 65.2%
ny = 50 51.9% 71.2% 74.0% 75.1%

ng =95 24.0% 27.9% 29.7% 28.4%

ChestX ny = 20 28.2% 37.1% 38.3% 35.6%
ng = 50 29.3% 43.4% 44.4% 44.7%

loses its performance as domains become more different from the source domain.
The other three columns show the effect of adaptation methods in few-shot

tasks.
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